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Theoretical and experimental studies for an orthopedic 
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Super-elastic NiTi has become a very important biomaterial, successfully used for technical and design issues relating to 
the miniaturization of medical devices and the increasing trend for less invasive and less traumatic procedures. In this 
paper, we present the elasticity matrix, the decomposition of the elasticity matrix, the eigenvalues and the eigenvectors for 
the crystallographic phases of Nitinol: trigonal, cubic, monoclinic and orthorhombic. In order to determine the variation law 
for the compression force developed by the Nitinol orthopaedic staple as function of temperature and, also, to validate the 
compression potential of the staple through constant pressure at the temperature of the human body, we made an 
experimental study, using an experimental stand. Using the video capture SIMI Motion software, the kinematical parameters 
of the both extremities of the staple were obtained. The analytical variation in time of the compression force exerted by the 
Nitinol staple is also obtained. The data acquired through this methods can be used to corroborate the experimental 
kinematical parameters with kinematical parameters obtained using various analytical or computer aided simulations in 
order to confirm a certain mechanical model. 
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1. Introduction 
 
Shape memory alloys (SMA) constitute a group of 

metallic materials with the ability to recover a previously 
defined length or a shape when subjected to an appropriate 
thermo-mechanical load. When there is a limitation of 
shape recovery, these alloys promote high restitution 
forces. Because of these properties, there is a great 
technological interest in the use of SMA for different 
applications. Nitinol is a shape memory alloy containing 
approximately 50 at. % nickel and 50 at.  % titanium and it 
is the alloy most frequently used in commercial 
applications because they combine good mechanical 
properties with shape memory effect.  

Super-elastic NiTi has become a material of strategic 
importance as it allows to overcome a wide range of 
technical and design issues relating to the miniaturization 
of medical devices and the increasing trend for less 
invasive and therefore less traumatic procedures. The 
alloys have several advantages as greater ductility, more 
recoverable motion, excellent corrosion resistance, stable 
transformation temperatures, good kink resistance,  less 
sensitivity to magnetic resonance imaging, fatigue life and 
the ability to be electrically heated for shape recovery  [1–
7] high biocompatibility [8-10].These properties make it 
an ideal biological engineering material, especially in 
orthopedic surgery [11,12], orthodontics [13,14]  
neurosurgery [15], minimal invasive surgery [16], in vivo 
skin closure [17]. 

The form of the elasticity matrix contains the 
restrictions done by the symmetry theory of classical 
crystallography and it permits a simple geometrical 
interpretation of the relationship between stress and strain 

regardless of the degree on anisotropy. These restrictions 
are reflected in the invariant structures of the spectral 
decompositions. The spectral forms are determined by the 
symmetry groups, and are independent of the values of the 
elastic constants.  

The eigenvalues and eigenvectors of the elasticity 
tensor were first discussed in [18] by Kelvin and his 
results are summarized in the Encyclopedia Britannica 
(1878). More recently, in [19] and [20] the eigenvalues 
and eigenvectors for anisotropic elasticity were 
determined. In [21] Ting has discussed the eigenvalue 
problem in connection with his study of the invariants of 
the elasticity tensor. The strain energy function for 
anisotropic Elastic materials was presented in [22] 

In these previous works, the elasticity tensor has been 
induced from a fourth-order symmetric linear 
transformation on the space of all 3x3 second-order 
tensors to n 6x6 second-order tensor.  

The first spectral decomposition of the elasticity 
tensor was made in [23], using tensorial products. Then, 
Sutcliffe in [24] developed this method and they used it for 
different types of symmetries. 

A more simple method, using matrix 6x6 was used in 
[25] for the decomposition of the rigidity matrix of the 
transversal isotropic materials. 

 
 
2. Theoretical considerations  
 
Be [ ]M  a symmetric matrix who belongs to ( )6M ℜ . 

So [ ] [ ]tM M= . We can do for [ ]M  the following 
decomposition: 
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[ ] [ ] [ ] [ ]1 1 2 2 ... m mM E E Eλ λ λ= + + + , 6m ≤  (1) 
 

where 1 2, ,..., mλ λ λ  are the eigenvalues of the matrix 

[ ]M . These values are determinate form the question: 

 [ ] [ ]det 0I Mλ⎡ ⎤− =⎣ ⎦    (2) 
 

and [ ] [ ] [ ]1 2, ,..., mE E E  are matrix who belong to ( )6M ℜ  
having the following properties: 
 

 [ ] [ ] [ ]i i iE E E=     (3) 

 [ ] [ ]i jE E 0⎡ ⎤ =⎣ ⎦  ji ≠    (4) 

 [ ] [ ] [ ] [ ]1 2 ... mE E E I+ + + =   (5) 
 

The matrix [ ]iE  can be determinate using the formula: 

 [ ] [ ][ ][ ]
ih

t
i k

k 1
E X I X

=
= ∑    (6) 

where: 
 - ih  is the multiplying order of the proper value; 
 - [ ]kI  is the matrix having on the principal 
diagonal in the position k the value 1 and all the order  
elements are null; [ ] ( )6kI M∈ ℜ ; 

 - the matrix [ ]X  has the aspect: 

 [ ] 1 2 3 4 5 6; ; ; ; ;X X X X X X X⎡ ⎤= ⎣ ⎦   (7) 

 
Solving the following systems, we determine the 
components of the matrix [ ]X : 
 

 
[ ] [ ]

1 2 6

kk

2 2 2
k k k

M I X 0

x x ... x 1, k 1;6

⎧⎡ ⎤− λ =⎣ ⎦⎪
⎨

+ + + = =⎪⎩

 (8) 

where: 

 

1

2

6

k

k
k

k

x

x
X , k 1;6

...
x

⎡ ⎤
⎢ ⎥
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (9) 

 
having the following property: 
 

 k j
1; if k j

X X
0; if k j

=⎧
⋅ = ⎨ ≠⎩

   (10) 

  
2.1. Decomposition of the elasticity matrix for  
        Nitinol structure phases 
 
In the case of the linear-elastic materials, the 

dependence between the deformation matrix components 
and the stress matrix components is a linear dependence: 

 
3 3

1 1
ij ijkl kl

k l
Sσ ε

= =
= ∑∑    (11) 

 
 This dependence can be written on the following 
form: 

 [ ]( ) ( )Sσ ε=    (12) 
 

where: 

 

11

22

33

23

13

12

( ) 2

2

2

ε⎧ ⎫
⎪ ⎪ε⎪ ⎪
⎪ ⎪ε⎪ ⎪ε = ⎨ ⎬ε⎪ ⎪
⎪ ⎪ε
⎪ ⎪
⎪ ⎪ε⎩ ⎭

; 

11

22

33

23

13

12

( ) 2

2

2

σ⎧ ⎫
⎪ ⎪σ⎪ ⎪
⎪ ⎪σ⎪ ⎪σ = ⎨ ⎬σ⎪ ⎪
⎪ ⎪σ
⎪ ⎪
⎪ ⎪σ⎩ ⎭

    (13) 

 

[ ]

1111 1122 1133 1123 1113 1112

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1211 1222 1233 1223 1

S S S 2S 2S 2S

S S S 2S 2S 2S

S S S 2S 2S 2S
S

2S 2S 2S 2S 2S 2S

2S 2S 2S 2S 2S 2S

2S 2S 2S 2S 2S

=

213 12122S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (14) 

 
with: 
 klijijlkjiklijkl SSSS ===   (15) 

 
Basically, SMA presents two well-defined 

crystallographic phases, i.e., austenite and martensite. 
Martensite is a phase that is easily deformed, reaching 
large strains (~8%), and in the absence of stress, is stable 
only at low temperatures; in addition, it can be induced by 
either stress or temperature.  

The basic properties of SMAs are the shape memory 
effect, pseudoelasticity, as well as other properties such as 
the acquired and two-way shape memory effect, damping 
capacity and fatigue life. Some of the commonly used 
SMAs are reviewed by chemical composition and 
thermomechanical properties. The effects that different 
processing techniques have on their properties are also 
discussed. The kinematics associated with the martensitic 
phase transformation in a single crystal is described for a 
cubic to tetragonal and cubic to monoclinic 
transformation, and the lattice invariant strain by plastic 
slip is discussed [26]. 

When the martensitic transformation takes place, 
numerous physical properties are modified. During the 
transformation, a latent heat associated with the 
transformation is absorbed or released based on the 
transformation direction. The forward, austenite-to-
martensite  transformation is accompanied by the release 
of heat corresponding to a change in the transformation 
enthalpy (exothermic phase transformation). The reverse,  
martensite-to-austenite  transformation is an endothermic 
phase transformation accompanied by absorption of 
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thermal energy. For a given temperature, the amount of 
heat is proportional to the volume fraction of the 
transformed material. 

In [27], using the local-density approximation, 
calculating the Hellmann-Feynman forces, and applying 
the direct method, the phonon-dispersion relations of cubic 
austenite, trigonal R, orthorhombic and monoclinic 
martensitic phases of the NiTi intermetallic compound 
have been derived. The orthorhombic structure, in turn, 
shows a shear low-frequency mode favoring a martensitic 
phase. The structures of NiTi phases are well known. At 
slightly above room temperature this material transforms 
martensitically from the parent austenite cubic phase  to a 
monoclinic martensitic phase [27].  The martensitic 
transformation is accompanied by a macroscopic shape 
change of the crystalline sample. Depending on how the 
martensitic transformation is provoked, the alloy exhibits 
different properties such as shape memory or 
superelasticity.  Several diffraction measurements report 
the structure of the martensitic phase [28-31]  

For cubic austenite NiTi the tight-binding band 
structure has already been presented in [32]. The linear 
combination of atomic orbitals method was used in [33]. 
The electronic structure of the monoclinic phase was 
calculated in [34-37]. 
 

2.2. Symmetry cases of Nitinol crystallographic  
       phases 
 
We present the elasticity matrix for the 

crystallographic phases of Nitinol.  
For the trigonal crystallographic structure, the matrix 

[S] has the expression: 
 

[ ]

11 12 13 15

12 11 13 15

13 13 33

44 15

15 15 44

15 11 12

C C C 0 2C 0

C C C 0 2C 0
C C C 0 0 0S
0 0 0 C 0 2C

2C 2C 0 0 C 0
0 0 0 2C 0 C C

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (16) 

 
In this case, the eigenvalues are: 

 

( )2 2
1 11 12 33 11 12 33 13

1 C C C C C C 8C
2
⎡ ⎤λ = + + + + − +⎢ ⎥⎣ ⎦

 

( )2 2
2 11 12 33 11 12 33 13

1 C C C C C C 8C
2
⎡ ⎤λ = + + − + − +⎢ ⎥⎣ ⎦

 

( )2 2
3 6 11 12 44 11 12 44 15

1 C C C C C C 16C
2
⎡ ⎤λ = λ = − + + − − +⎢ ⎥⎣ ⎦

(17) 

( )2 2
4 5 11 12 44 11 12 44 15

1 C C C C C C 16C
2
⎡ ⎤λ = λ = − + − − − +⎢ ⎥⎣ ⎦

 

 
and the matrix of eigenvectors is: 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ββ−
ββ−

ββ
αα

β−β−α−α

ββα−α

=

cossin
cossin

sincos
sincos

sincoscossin

sincoscossin

X

0000
0000

0000
0000

0
2
10

2
1

2
1

2
1

0
2
10

2
1

2
1

2
1

    (18) 

 
where: 

( )
2 11 12

22
13 2 11 12

C C
sin

2C C C

λ − −
α =

+ λ − −
 

( )
1 11 12

22
13 1 11 12

C C
cos

2C C C

λ − −
α =

+ λ − −
; 

( )
11 12 3

2 2
11 12 3 15

C C
sin

C C 4C

− −λ
β =

− −λ +
; 

( )
11 12 4

2 2
11 12 4 15

C C
cos

C C 4C

− −λ
β =

− −λ +
             (19) 

 
The matrix of the spectral decomposition will be: 
 

[ ]

2 2

2 2

21

1 1 1sin sin sin 2 0 0 0
2 2 2 2
1 1 1sin sin sin 2 0 0 0
2 2 2 2
1 1E sin 2 sin 2 cos 0 0 0

2 2 2 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎡ ⎤α α α⎢ ⎥
⎢ ⎥
⎢ ⎥

α α α⎢ ⎥
⎢ ⎥
⎢ ⎥= α α α⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

        (20) 

 

[ ]

2 2

2 2

22

1 1 1cos cos sin2 0 0 0
2 2 2 2
1 1 1cos cos sin2 0 0 0
2 2 2 2
1 1E sin2 sin2 sin 0 0 0

2 2 2 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎡ ⎤α α − α⎢ ⎥
⎢ ⎥
⎢ ⎥

α α − α⎢ ⎥
⎢ ⎥
⎢ ⎥= − α − α α⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     (21) 

 
2 2

2 2

3 2

2

2

1 1 1cos cos 0 0 sin2 0
2 2 2 2
1 1 1cos cos 0 0 sin2 0
2 2 2 2

0 0 0 0 0 0
E 10 0 0 sin 0 sin2

2
1 1sin2 sin2 0 0 sin 0

2 2 2 2
10 0 0 sin2 0 cos
2

⎡ ⎤β − β − β⎢ ⎥
⎢ ⎥
⎢ ⎥
− β β β⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥β β
⎢ ⎥
⎢ ⎥
⎢ ⎥− β − β β
⎢ ⎥
⎢ ⎥
⎢ ⎥β β
⎣ ⎦

     (22) 
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[ ]

2 2

2 2

4 2

2

2

1 1 1sin sin 0 0 sin2 0
2 2 2 2
1 1 1sin sin 0 0 sin2 0
2 2 2 2

0 0 0 0 0 0
E 10 0 0 cos 0 sin2

2
1 1sin2 sin2 0 0 cos 0

2 2 2 2
10 0 0 sin2 0 sin
2

⎡ ⎤β − β β⎢ ⎥
⎢ ⎥
⎢ ⎥
− β β − β⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥β − β
⎢ ⎥
⎢ ⎥
⎢ ⎥β − β β
⎢ ⎥
⎢ ⎥
⎢ ⎥− β β
⎣ ⎦

       (23) 

 
Particular cases: 

 
a)In the case of the cubic crystallographic structure: 
 
C12=C13 ;   C33=C11 ;   C44=C11-C12 ;   C15=0  (24) 

 

[ ]

11 12 12

12 11 12

12 12 11

44

44

44

C C C 0 0 0
C C C 0 0 0
C C C 0 0 0

S
0 0 0 C 0 0
0 0 0 0 C 0
0 0 0 0 0 C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (25) 

The eigenvalues are: 
 

1 11 12C 2Cλ = + ;  2 3 11 12C Cλ = λ = −  
 4 5 6 44Cλ = λ = λ =    (26) 

 
The matrix of eigenvectors is: 
 

[ ]

1/ 3 1/ 6 1/ 2 0 0 0

1/ 3 1/ 6 1/ 2 0 0 0

1/ 3 2 / 6 0 0 0 0X
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡ ⎤−
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (27) 

 
The matrix of the spectral decomposition will be: 
 

[ ]1

1 / 3 1 / 3 1 / 3 0 0 0
1 / 3 1 / 3 1 / 3 0 0 0
1 / 3 1 / 3 1 / 3 0 0 0

E
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (28) 

[ ]2

2 / 3 1/ 3 1/ 3 0 0 0
1/ 3 2 / 3 1/ 3 0 0 0
1/ 3 1/ 3 2 / 3 0 0 0

E
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

              (29) 

[ ]4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

E
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (30) 

 
b) In the case of monoclinic crystallographic structure: 
 

[ ]

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

C C C 0 0 C
C C C 0 0 C
C C C 0 0 C

S
0 0 0 C C 0
0 0 0 C C 0

C C C 0 0 C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (31) 

 
The eigenvalues are: 

( )2 2
4 44 55 44 55 45

1 C C C C 4C
2
⎡ ⎤λ = + + + +⎢ ⎥⎣ ⎦

 

( )2 2
5 44 55 44 55 45

1 C C C C 4C
2
⎡ ⎤λ = + − + +⎢ ⎥⎣ ⎦

 (32) 

 
and  1 2 3 4, , ,λ λ λ λ are the roots of the equation: 
 
 4 3 2

1 2 3 4I I I I 0λ − λ + λ − λ + =    (33) 
 
where Ik is the sum of the diagonal minors of k degree 
obtained by cutting the fourth and the fifth columns and 
rows in matrix [S]. 
c) In the case of orthorhombic crystallographic structure: 
 

[ ]

11 12 13

12 22 23

13 23 33

44

55

66

C C C 0 0 0
C C C 0 0 0
C C C 0 0 0

S
0 0 0 C 0 0
0 0 0 0 C 0
0 0 0 0 0 C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (34) 

 
The eigenvalues are: 
 

4 44Cλ =  5 55Cλ =  6 66Cλ =  (35) 
 

and  1 2 3, ,λ λ λ are the roots of the equation: 
 
 3 ' 2 ' '

1 2 3I I I 0λ − λ + λ − =    (36) 
 
where '

kI is the sum of the diagonal minors of k degree 
obtained by cutting the last three columns and rows in 
matrix [S]. 
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3. The analytical expression for the staple  
    compression force  
  
The stress vector can be written:  

( ) ( )i
i

σ σ=∑    (37) 

where:  
( ) [ ] ( )i iEσ σ= ⋅    (38) 

Therefore, the specific deformation energy is:  

( ) ( )
( )

1 1
2

t
i i

i i

U σ σ
λ

= ⋅ ⋅ ⋅∑   (39) 

The orthopedic staple can be modeled as a bar which 
has an initial shape. When temperature increases it suffers 
deformations, changing its shape. Taking into account 
mechanically considerations, the deformation can be 
accepted as being caused by an exterior force which is 
applied to the free extremity. Thus, an increase of 
temperature, ΔT produces a displacement of the free 
extremity, Δw.  The same displacement can be produced 
by a force (ΔP) which is applied in the free extremity. In 
fact, the force (ΔP) is a force to be applied in the free 
extremity. 

The total deformation energy is: 

( ) ( )
( )( )

1 1
2

t
i i

ii D
U dvσ σ

λ
= ⋅ ⋅ ⋅ ⋅∑ ∫∫∫   (40) 

 

 
 

Fig.1. The loading schema for the Nitinol staple 
 

According to the Castigliano theorem energy, the 
derived strains of an elastic body compared with force 
value ΔP seam with the displacement projection of the 
application point of the direction force (fig.1).  

 

( )
Uw

P
∂

Δ =
∂ Δ

         (41) 

 
In the case of small deformations we can accept that 

the stress developed in the staple are proportional to the 
variation force ΔP. In these conditions, we can write: 

( ) ( )
( )( )

1 t
i i

ii D
w P e e dv

λ
Δ = Δ ⋅ ⋅ ⋅ ⋅∑ ∫∫∫   (42) 

where: 

( ) ( )
( )

i
ie

P
σ∂

=
∂ Δ

   (43) 

 
The vectors (ei) depend only of the staple shape. The 

triple integrals which occur in the relation (42) depend on 
the temperature, but in a measure much smaller than the 
eigenvalues.  

( ) ( )
( )

t
i i i

D
J e e dv= ⋅ ⋅∫∫∫   (44) 

Therefore the integrals can be considerate constants. 
In this case, by passing to the limit, the relation becomes:   

( )

1
i

ii
w P J

λ

• •
= ⋅ ⋅∑   (45) 

Taking into account the small volume of the staple, it 
can be considered that the temperature reached is given by 
the law:   

( )eT c T T
•
= −    (46) 

 
where c is a coefficient which depends on the material 
thermal conductivity of  the staple.  Te is the temperature 
of outdoors. The temperature variation on time is:  
 

( ) ( )ic t t
e e iT T T T e− ⋅ −= − − ⋅  (47) 

 
Ti = initially temperature of staple; 
ti = initially value of time; 

The eigenvalues iλ  of the elasticity matrix depend on 

the temperature and on the value ( )ittce −−   
 

( )( ); ; ic t t
i i e iT T eλ λ − −=   (48) 

 
Experimentally, it is demonstrated that the staple 

deformation is produced with constant speed: w
•

=cst, 
(Fig.11). In [38] were tested three Nitinol wire specimens: 
a commercially available superelastic (W1) wire and two 
shape memory wires with their nominal Af points were 
350C (W2) and 400C (W3), respectively. They showed 
typical superelastic hysteresis loops under the restraint 
condition at 400C.  After the wire was given a 1.0 mm 
maximum deflection at 320C, the changes in the recovery 
force against the deflection were examined when the wire 
was subjected to the following temperature changes: 
(1)  320C - 400C - 320C 
(2)  320C - 230C - 320C 

Furthermore, the changes in the recovery force were 
pursued during the deflection change from 1.0 to 0mm at 
each temperature successively after the temperature was 
changed. Also, it is demonstrated that the dependence of 
recovery force function on temperature is linear.  

Developing in factors series in function of term  
( )ittce −−    the functions of the proper values and keeping 

only the first order term, the relation (45) becomes: 
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( ) ( )c t ti
e iP f T ;T e− ⋅ −= ⋅   (49) 

 
The variation in time of the compression force exerted 

by the staple is: 

( ) ( )( )1 ; 1 ic t t
i e iP P f T T e

c
− −= + ⋅ ⋅ −               (50) 

 
where: Pi is the exerted force at the initial moment ti. 
 
 

4. Experimental studies for the Nitinol staple 
 
In order to determine the law of variation for the 

compression force which can be developed by the Nitinol 
staple as a function of variable environmental temperature 
and also to validate the compression potential of the staple 
through constant pressure at the temperature of the human 
body, we developed an experimental stand (Fig.2). 
 

 

 
 

Fig.2.Experimental stand 
 

The experimental stand is made from: 
-Experimental device used to mount the modular adaptive 
implant; 
-Spider 8 – a numerical acquisition system, 12 bits 
resolution, used to measure mechanical parameters, such 
as: forces, mechanical stresses, pressures, accelerations, 
velocities, displacements, temperatures. The acquisition 

system contains specialised modules for measuring various 
mechanical parameters (Fig.3.). 
-S2-100N force transducer, 0.1% linearity, Hottinger type. 
The transducer works for compression-traction and is 
based on four strain gauges in full configuration with 
temperature compensation. The strain gauges are mounted 
on a fibreglass base reinforced with fenolic resin. The 
response is situated in the [-200...+250] ºC temperature 
domain.  
-FLIR B200 termographic camera, 
-IBM ThinkPad R5 notebook. 

The Nitinol staple was stored for 15 minutes in NaCl 
liquid solution, 30% concentration, at -200C in a freezer. 
At this temperature the material of the staple enters in 
martensitic phase and the lateral pins of the staple are 
parallel. Having this shape, the staple was extracted from 
the NaCl solution and was easily inserted in special 
channels of the two implant modules fixed in the device. 

The staple was then left to attain room temperature 
(290C), thereby compressing the two modules. 

 
 
 

 
 

Fig. 3. Spider 8- the connection scheme for the 
processing and input modules 

 
 

Afterwards, a jet of hot air was blown onto the staple 
increasing his temperature in different stages: first, to 
310C, in a time period of 120 sec, then, to 350C in a time 
period of 120 sec and, finally, to 370C, the temperature of 
the human body. The hot air jet was then stopped and after 
the staple returned to room temperature it was extracted 
from the modular implant. 

Finally, we obtained the force-temperature plot (based 
on 65000 acquired pairs of data). One can observe a 
maxim value of 54 N which corresponds to 370C 
temperature for which the material of the staple entered in 
the second phase: cubic austenite (Fig.4). 
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Fig.4 The compression force function on time 
  

In order to correlate the staple deformation with the 
developed compression force, the temperature increase has 
been controlled with the aid of a termographical camera 
ThermaCam Flir B200.  

 
The ThermaCam workflow is (Fig.5): 

1. Images in infrared or/and digital pictures are 
taken; 
2. The images are moved from Termacam to PC;  
3. Using the FLIR QuickReport software, the 
analysis of the images is made; 
4. The Report for infrared images is realized. 
Several successive infrared frames have been taken during 
the experiment (Fig. 6.). 
 

 
 

Fig. 5.ThermaCam workflow. 
 

Afterwards, these pictures have been processed and 
analysed. For the image in which the Nitinol staple 
reached 370 C we have obtained temperature diagrams by 
transferring in Microsoft Excel the database corresponding 
to the temperatures of each pixel of the A1 area (Fig.7). 
The corresponding graphics are presented in Fig.8. 

 

   

   
 

Fig.6. Several images taken with termographical camera  
 
 

  
 

Fig.7. Image corresponding to 370 C temperatures in two 
variants: a) red –blue palette b) Rain palette 

 
 

 
 

Fig.8. The temperature variation in the pixels situated on 
9 lines of the Ar1 area 

       
 

Using the SIMI Motion software, the kinematical 
parameters of the both extremities of the staple were 
obtained. The Block schema of Simi Motion video 
analysis method is presented in Fig.9. Two successive 
positions of staple deformation process are presented in 
Fig.10. In Figures 11, the displacement diagram [mm], as 
functions of time, for the left point is presented. One can 
be observed that the dependence displacement-time is 
linear. This observation was used for the determination of 
the compression force theoretical expression. 
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Fig.9.The Block schema of the Simi Motion video analysis 
method 

 

 
 

Fig.10. Two successive positions of staple deformation 
process 

 

 
 

Fig.11. The displacement diagram for the left extremity 
of the staple 

 
 

5. Discussions 
 
The elasticity matrixes for the crystallographic phases 

of Nitinol are presented. The eigenvalues depend on the 
values of the elastic constants, but the eigenvectors are, in 
part, independent of the values of the elastic constants. We 
consider that the staple finishes its deformation when the 
difference between its temperature and room temperature 
is 1o C≤ . In this hypothesis, the coefficient c can be 
determined with the relation: 

 
( )ln e iT T

c
t
−

=
Δ

    (51) 

 
 
 

where tΔ is the staple deformation time. 
Experimentally, we can see that tΔ =45sec,  

corresponding to the interval [-20; 29] 0C of temperature 
variation (Fig.11). In this case, the resulted value for c is 
0,086sec-1. This value corresponds to the studied staple, 
so, taking into account the concrete experimental 
conditions, it is a constant for this product. Any other 
product made from Nitinol will have other value for c.  
The experimental diagram presented in fig.4 shows the 
stages of the compression force variation corresponding to 
the stages of the temperature variation (Table 1). 
 

Table 1. Compression force values. 
 

Temperature 
variation (o C) 

Compression force 
variation (N) 

Values for  
f(Te-Ti)   (N) 

-20.....29   0.....17 f(29;-20)=17 
29......31 17....24 f(31;29) = 7 
31......35 24....44 f(35;31)=20 
35......37 44....54 f(37;35)=10 

 
Using the values for f(Te-Ti) as input data in the 

relation (50), we made a numerical simulation in Maple12 
and we obtained the graphic presented in Fig.12. For the 
numerical simulation, we respected the same temperature 
increasing stages as in the experimental case. This 
explains the allure of the numerical graphic. For first 
temperature increase, from -200C to 290C, the force 
variation is nonlinear, and for the other three stages we 
observe that the force increasing is less than 10 N for a 
temperature increasing with 20C, the force variation is 
linear. For constant temperatures, the force remains 
constant. 

 

 
 

Fig.12 The numerical graphic. 
 
 

The diagram force-displacement proves the maximum 
of the compression force (54 N) is obtained in the Nitinol 
staple at the body temperature, 370C. This properties of the 
Nitinol staple allows its using in orthopedic applications, 
like simple orthopedic implants, or adaptive modular 
implants (Fig.13).  
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Fig.13. Two modules connected by a Nitinol staple 
 

The proposed adaptive modular implant is a bone 
plate assembly made from two Titanium modules and a 
Nitinol staple [39].  The shape memory staple is, initially, 
in their opened shape. Through heating, this staple tends to 
the original shape, the closed shape, developing a constant 
compressing force of 56 N at the 370C body temperature. 
This implant represents a superior solution in the process 
of the fractured bones osteosynthesis over the 
conventional implants known so far, due to the following 
advantages: 
-the possibility of mounting the Nitinol staple to the 
modules situated near the fracture hotbed enables the 
stabilization of the implants and the good union of the 
bone fractures, a key element in the healing process; 
-due to constant pressure exerted, it provides the 
compaction of the fractures fragments. 
-the small sizes of the modules enable the surgeon to use 
minimally invasive surgery, with following advantages: 
▪ reduction of soft tissues destruction; 
▪ elimination of intra-operator infections; 
▪ reduction of blood losses; 
▪ reduction of post-operator infection risk; 
▪ reduction of the healing time; 

The video capture analysis used for experimental 
studies is a fast, accurate kinematical study method. The 
data acquired through the experimental methods can be 
used to corroborate the experimental kinematical 
parameters with kinematical parameters obtained using 
various analytical or numerical simulations in order to 
confirm a certain mechanical model. 
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